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Vibration-induced interfacial instabilities in viscoelastic fluids
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Vertically vibrated interfaces between viscoelastic fluids may arise in contexts as diverse as ultrasonic
emulsification, microgravity materials processing, and geophysics. If the vibration amplitude is large enough at
a given frequency, the interface can become unstable and give rise to standing waves. The present work
provides a linear analysis of this phenomenon for the cases where either or both of the fluids are viscoelastic.
The fluids are assumed to be laterally unbound, and Floquet theory is used to develop a recursion relation
between the temporal modes of the interfacial deformation. Conversion of this relation into a matrix eigenvalue
problem allows determination of the critical vibration amplitude needed to excite the standing waves and the
corresponding critical wave number. Using a single-mode Maxwell model to describe the viscoelasticity and
considering infinite fluid depths, we present calculations for three cases: bottom fluid viscoelastic/top fluid
Newtonian, bottom fluid Newtonian/top fluid viscoelastic, and both fluids viscoelastic. When only one of the
fluids is viscoelastic, the interfacial waves can respond harmonically to the forcing. The waves may also be
excited more easily than in the case where both fluids are Newtonian. When both of the fluids are viscoelastic,
it appears possible to excite Stoneley-like waves at the interface.

DOI: 10.1103/PhysRevE.65.026305 PACS number~s!: 47.20.2k
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I. INTRODUCTION

When a flat free surface is subject to vertical vibration
may become unstable to standing waves. This was first
ported by Faraday@1#, and over a century later the mech
nism was explained by Benjamin and Ursell@2#. The mecha-
nism is that of parametric resonance, and is exemplified b
pendulum whose pivot point oscillates vertically@3#. This
problem has been thoroughly examined for inviscid@2,4#,
Newtonian@5–7#, and viscoelastic@8–11# fluids. Linear sta-
bility analysis accurately predicts the critical vibration am
plitude needed to excite the surface waves, as well as
corresponding critical wave number. A similar instability a
mechanism operate when the interface between two imm
cible fluids is subject to vertical vibration. While the ca
where both fluids are Newtonian has been well studied,
cases where either or both fluids are viscoelastic have
been examined. The latter cases are of potential importa
to several practical applications and are the topic of
present study.

The excitation of interfacial waves by vertical vibration
relevant to emulsification, microgravity materials processi
and geophysics. If the wave amplitude becomes sufficie
large, droplets may pinch off and produce an emulsion.
trasound can be used as a vibration source, and doing s
Newtonian fluids results in stable dispersions of submic
particles having a relatively uniform size distribution@12#.
Applying this technique to viscoelastic fluids may lead to t
creation of novel polymeric nanocomposite materials. In m
crogravity environments, viscoelastic fluids may appear
polymer solutions and melts, colloidal suspensions, or b
logical media~e.g., cells suspended in solution!. If these flu-
ids are in contact with another fluid and undergo verti
vibration, the resulting interfacial waves may be detrimen
to the process of which the fluids are a part. On geophys
scales, liquid-like sediment could possess viscoelastic rh
1063-651X/2002/65~2!/026305~7!/$20.00 65 0263
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logical properties and be in contact with water or other se
ment @13#. Having a way to compute the critical amplitud
and wave number of vibration-induced interfacial wav
might prove useful in predicting some of the effects of ear
quakes.

Vibration-induced waves at the interface between t
Newtonian fluids have been analyzed by a number of diff
ent investigators. Motivated by the observation that verti
vibration can suppress the Rayleigh-Taylor instabili
Troyon and Gruber applied Fourier and Laplace transfor
to the linearized governing equations@14#. Their predictions
of the critical vibration amplitude and wave number agre
favorably with the experiments of Hoffmann and Wolf@15#.
The same problem was also considered by Jacqmin and
val, who applied Floquet theory@16#. In both of the above
studies, the fluids were assumed to be of infinite dep
Finite-depth effects were accounted for by Hasegawa,
gashima, and Takashima@17#, as well as by Kumar and
Tuckerman @18#. Again, the theoretical predictions wer
found to be in good agreement with experimental measu
ments@17,19#.

In this work, we extend the above studies to cases wh
one or both of the fluids are viscoelastic. We apply Floq
theory to the linearized governing equations and demonst
how one can calculate the critical vibration amplitude need
to excite standing waves at the interface, and the corresp
ing critical wave number. In Sec. II, we set up the proble
and explain the calculation method. Results are presente
Sec. III, where we consider three cases: bottom fl
viscoelastic/top fluid Newtonian, bottom fluid Newtonian/to
fluid viscoelastic, and both fluids viscoelastic. Finally, a d
cussion and conclusions are given in Sec. IV.

II. PROBLEM SETUP

The base state for the problem is shown in Fig. 1. T
immiscible fluids whose interface is flat undergo a vertic
©2002 The American Physical Society05-1
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oscillation of amplitudea and frequencyv, with a mean
gravity g acting in the negative-z direction. We denote the
bottom fluid as ‘‘fluid 1’’ and the top fluid as ‘‘fluid 2.’’ Their
densities are given byr1 and r2 , and we assume thatr2
,r1 so that the interface is stable in the absence of vib
tion. A tensions acts at the interface. Adopting a referen
frame that moves with the oscillation, we take the flat int
face to be located atz50 and the fluids to be bounded b
solid walls atz5h2 andz52h1 . The fluids are assumed t
be laterally unbound, and this will be a good assumpt
when the critical wavelength is much less than the conta
width.

In linear stability analysis, we are interested in small d
partures from the base state, and in this problem these
respond to small deformation gradients since the base sta
quiescent. As a consequence, the extra-stress tensors fo
fluids can be described by the theory of linear viscoelasti
@20#,

t j5hs, j@“uj1~“uj !
T#1E

2`

t

Gj~ t2t8!@“uj1~“uj !
T#dt8,

~1!

where theuj are the velocity fields, theGj are the relaxation
moduli, and thehs, j are the solvent viscosities for each flu
~j 51 or 2!.

Because the reference frame is moving, the equation
motion for each fluid will have time-dependent body forc
given by 2r jB(t)ez , whereB(t)5g2a cos(vt) and ez is
the unit vector in thez direction. Recognizing that in the bas
state the pressure fields are time dependent, and that th
locities of the fluids are zero, leads us to the following li
earized momentum and continuity equations:

r j] tuj52“pj1hs, j¹
2uj1E

2`

t

Gj~ t2t8!¹2ujdt8, ~2!

“•uj50. ~3!

All variables now refer to disturbance quantities. By app
ing the operatorex•“3“3 to Eq.~2! and using Eq.~3!, we
can obtain equations for thez components of the velocitie
wj ,

FIG. 1. Interface between two viscoelastic fluids under verti
vibration. The reference frame moves with the vibration so that
interface is located atz50 in the base state. The fluids are bound
by solid walls atz52h1 and z5h2 . The vibration occurs at a
frequencyv and with an amplitudea. The mean gravityg acts in
the negative-z direction, and the top fluid is taken to have a smal
density than the bottom fluid.
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2!¹2wj2

1

r j
E

2`

t

Gj~ t2t8!¹2~¹2wj !dt850,

~4!

wherens, j5hs, j /r j .
Equation~4! is subject to boundary conditions at the so

walls ~no-slip and no-penetration! and at the interface~con-
tinuity of velocity, and balance of tangential and norm
force components!. Because these boundary conditions ha
forms very similar to those given in@9# and@18#, we do not
reproduce them here. The interface location,z5z(x,y,t), is
described by the kinematic condition@18#.

The normal-mode decomposition is performed by repl
ing wj (x,y,z,t) with wj (z,t)exp(ik•x) and z(x,y,t) with
z(t)exp(ik•x). Here,k is a real-valued wave vector~whose
magnitude is denoted byk! andx is a coordinate vector, both
of which are in thex-y plane. Since the system under stu
is periodically forced, Floquet theory can be applied to d
scribe its time dependence. Fourier series are used to en
the 2p/v periodicity of z and thewj ,

z~ t !5e~s1 iav!t (
n52`

`

zneinvt, ~5!

wj~z,t !5e~s1 iav!t (
n52`

`

wj ,n~z!einvt, ~6!

wheres is a real-valued growth rate and the value ofa de-
termines whether the surface responds subharmonicallya
51/2) or harmonically (a50) to the forcing. Previous work
on vibration-induced instabilities suggests that these are
only types of responses which need to be conside
@5,11,16,18#.

Application of Eqs.~5! and~6! to the governing equation
and boundary conditions, along with a number of furth
manipulations like those in@9# and@18#, leads to a recursion
relation for thezn ,

Anzn5a~zn111zn21!, ~7!

where An depend onk, the complex growth rates1 i (a
1n)v, the physical properties of the fluids, the fluid depth
and the forcing frequency. The expressions for theAn are the
same as those used in@18# except that they now involve a
frequency-dependent wave number and viscosity,

qj ,n
2 5k21

s1 i ~a1n!v

n j ,n~v!
, ~8!

with

n j ,n~v!5
hs, j

r j
1

1

r j
E

0

`

Gj~t!exp$2@s1 i ~a1n!v#t%dt.

~9!

A matrix eigenvalue problem can be formed from the
cursion relation~7! by truncating it at a finite value, sayn
5N @18#. The eigenproblem has the form

l
e

r

5-2
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VIBRATION-INDUCED INTERFACIAL INSTABILITIE S . . . PHYSICAL REVIEW E 65 026305
A21Bz5
1

a
z. ~10!

The matricesA and B are real and of dimension 2(N11)
32(N11), and the vectorz is of dimension 2(N11)31.
At each value ofk andv, one can compute the eigenvalu
1/a using standard algorithms. Doing this over a range ok
values at fixedv and plotting the results in thek-a plane
produces a sequence of tonguelike curves~Fig. 2!. One set of
curves can be generated fora51/2 ~subharmonic response!
and another fora50 ~harmonic response!. The neutral sta-
bility curves are those for whichs50, and the critical vibra-
tion amplitude and corresponding wave number are given
the tongue tip closest to thek-axis.

III. RESULTS

As we are interested in uncovering the most basic effe
of viscoelasticity, we take both fluids to be of infinite dep
in our calculations. In addition, we adopt the single-mo
Maxwell model to describe the relaxation moduli,

Gj~ t2t8!5
hp, j

l j
exp@2~ t2t8!/l j #, ~11!

where thel j are the relaxation times for each fluid. If w
imagine that the viscoelasticity arises due to polymers
solved in a Newtonian solvent, then thehp, j represent the
polymer contributions to the zero-shear viscosity for ea
fluid. The ratioshp, j /l j are simply the shear moduli.

With the single-mode Maxwell model, the comple
valued frequency-dependent viscosity~9! becomes

n j ,n~v!5ns, j1
np, j

11 i ~a1n!Dej
, ~12!

FIG. 2. Tonguelike neutral stability curves in thek-a plane. The
tongues alternately correspond to subharmonic and harmonic
sponses of the interfacial waves to the forcing, with the tong
closest to thea-axis corresponding to a subharmonic response.
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wherenp, j5hp, j /r j andDej5l jv. TheDej are the Debo-
rah numbers of each fluid, and give the ratio of the flu
relaxation time to a characteristic time of the standing wa
oscillations. If Dej!1 in a given fluid, then the non
Newtonian stresses relax relatively quickly and the fluid b
haves in a Newtonian manner withn j ,n(v)5ns, j1np, j . If
Dej@1, then the non-Newtonian stresses relax relativ
slowly and Newtonian behavior also occurs withn j ,n(v)
5ns, j .

In our work, we have obtained results for three cas
bottom fluid viscoelastic/top fluid Newtonian, bottom flu
Newtonian/top fluid viscoelastic, and both fluids viscoelas
The code for computing the critical vibration amplitude a
wave number was validated by reproducing known res
for Newtonian systems@18#. We used ten Fourier mode
(N510) in solving the matrix eigenvalue problem, and ve
fied that this was enough to give accurate solutions.

A. Bottom fluid viscoelastic, top fluid Newtonian

Before considering the instability at the interface betwe
a viscoelastic fluid and a Newtonian fluid, it is worthwhile
review what happens when only the viscoelastic fluid
present~i.e., when the instability occurs at a free surface! @9#.
To see a distinct non-Newtonian effect on instability beha
ior, elastic forces must be at least as strong as viscous fo
which implies thathp'hs . If this is the case, and if surfac
tension forces are sufficiently strong relative to elastic forc
the surface waves will respond subharmonically to the fo
ing. The critical wave number will be similar to that for
Newtonian fluid of the same zero-shear viscosity, but
critical amplitude will increase less rapidly with the vibratio
frequency. Ashp increases at fixedhs ands, elastic forces
become stronger relative to viscous forces and surfa
tension forces. In this case, it is possible for the surfa
waves to respond harmonically to the forcing provided t
De is not too large or too small. The presence of the h
monic response also requiresl to be below a critical value,
which means that the elastic modulus must be above a c
cal value.

The harmonic response of viscoelastic fluids can oc
when the fluid is of infinite depth, and is notable becau
Newtonian fluids of infinite depth airways respond subh
monically. The harmonic response in viscoelastic fluids
pears to arise because such fluids can behave like el
solids and thus support Rayleigh-like surface waves@9#. For
Newtonian fluids that are relatively viscous (n;1 cm2/s),
harmonic responses can occur in shallow layers~;1 mm!
@5#. Here, the viscous dissipation at the bottom bound
increases more rapidly for longer wavelengths as the fl
depth decreases. As a result, the tip of the subharm
tongue closest to thea-axis in the neutral stability curve
~Fig. 2! gets pushed to a higher value ofa than that of the
neighboring harmonic tongue. In viscoelastic fluids of fin
depth, this mechanism for producing a harmonic respo
operates in addition to the mechanism discussed above.

Since the infinite-depth harmonic response is the m
distinguished feature of the free-surface instability for a v
coelastic fluid, our results for interfacial instability will focu

re-
e
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FIG. 3. The~a! critical wave number (kc) and
~b! critical vibration amplitude (ac) vs the vibra-
tion frequency~v! for the case where the bottom
fluid is viscoelastic and the top fluid is Newton
ian. Open circlesr2 /r150.1,ns,2 /ns,151; Dash-
dot line:r2 /r150.98,ns,2 /ns,151; Dashed line:
r2 /r150.98, ns,2 /ns,15100; Solid line: r2 /r1

50.1, ns,2 /ns,15100.
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on how the harmonic response is affected by a top fluid
is Newtonian. To facilitate comparison with previous studi
our calculations are done in dimensional units. We consid
viscoelastic fluid corresponding to a semidilute polymer
lution, where r151 g/cm3, ns,150.01 cm2/s, np,1
510 cm2/s, andl15131023 s. The interfacial tensions is
taken to be 10 dyne/cm. The viscosity (ns,2) and density (r2)
of the top fluid are varied in the calculations~np,2 andl2 are
zero.! We also consider vibration frequencies between 20
200 Hz, which correspond to mechanical agitation. For ul
sonic frequencies,De1@1 and the harmonic response w
not be present. The mean gravityg is taken to be that of
earth, 981 cm2/s.

Figure 3~a! shows plots of the critical wave number ve
sus the vibration frequency for different values of the rat
r2 /r1 and ns,2 /ns,1 . Figure 3~b! shows the correspondin
plots of the critical vibration amplitude. Forr2 /r150.1 and
02630
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ns,2 /ns,151, the response is similar to what would occur if
free surface were present. At around 80 Hz, there is a t
sition from a subharmonic to a harmonic response and
wave number jumps to a larger value. Asr2 /r1 increases to
0.98, the transition frequency decreases to around 74 Hz.
critical wave numbers and amplitudes also become lar
When ns,2 /ns,1 is then increased to 100, the transition fr
quency increases back to around 80 Hz. The wave num
~at least after the transition! become larger, as do the ampl
tudes. Finally, asr2 /r1 drops to 0.1 the transition frequenc
remains at about the same value, but the critical wave n
bers and amplitudes decrease. The plots forns,2 /ns,151 and
ns,2 /ns,15100 at r2 /r150.1 are approximately the sam
due to the fact that the density of the top fluid is very sm
compared to that of the bottom.

From the above results, as well as from other runs
have performed, we can draw the following conclusions. A
5-4
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VIBRATION-INDUCED INTERFACIAL INSTABILITIE S . . . PHYSICAL REVIEW E 65 026305
fixed solvent viscosity ratio, increasing the density of the
layer relative to that of the bottom decreases the transi
frequency and increases the critical amplitudes. The hig
amplitudes imply that the instability becomes harder to
cite, and this is consistent with what we expect since den
differences amplify the instability. The critical wave num
bers, both before and after the subharmonic-to-harmo
transition, also tend to increase. At a fixed density ratio,
creasing the solvent viscosity of the top layer relative to t
of the bottom increases the transition frequency and crit
amplitudes. Here, the higher amplitudes result because
increased viscous dissipation provided by the upper fl
must be overcome in order to excite the instability. The cr
cal wave numbers before the transition increase and
decrease asns,2 /ns,1 increases, while those after the tran
tion increase. The behavior of the critical amplitudes
ns,2 /ns,1 or r2 /r1 vary does not appear to be a no
Newtonian effect since similar behavior is seen in the c
where both fluids are Newtonian.

B. Bottom fluid Newtonian, top fluid viscoelastic

When both fluids are Newtonian and of infinite depth, t
interfacial waves always respond subharmonically to
forcing. In the preceding section, we have seen that i
possible to obtain a harmonic response when the bottom
is viscoelastic. We have also found that such a respons
possible when the top fluid is viscoelastic. Consider the c
where ns,150.01 cm2/s, r151 g/cm3, and s510 dyne/cm
(np,1 andl1 are zero!. If we use the same range of vibratio
frequencies as before and takens,2 /ns,151, np,2 /ns,2
51000,r2 /r150.98, andl5131023 s, a transition from a
subharmonic to a harmonic response is observed aroun
Hz.

As the parameters for the viscoelastic fluid are similar
those used before, the same criteria apply for obtainin
harmonic response; elastic forces must be sufficiently st
ger than surface tension and viscous forces, andDe2 must
not be too large or small. In addition,r2 /r1 must be suffi-
ciently large; the harmonic response will disappear ifr2 is
made too small compared tor1 . When the harmonic re
sponse does occur, we find that increasingr2 /r1 at fixed
ns,2 /ns,1 tends to decrease the transition frequency and
crease the critical amplitudes. Before and after
subharmonic-to-harmonic transition, the critical wave nu
bers decrease. We also find that as the Newtonian fluid
comes more viscous at fixedr2 /r1 ~i.e.,ns,2 /ns,1 decreases!,
the transition frequencies and critical amplitudes increa
Before the transition, the critical wave numbers increase
then decrease, while after the transition the critical wa
numbers increase. We note that the effects of changing
solvent viscosity ratio are similar to what was reported in
preceding section.

We can also compare the effects of a viscoelastic top fl
to those of a Newtonian one having the same zero sh
viscosity. Figures 4~a! and 4~b! show the critical wave num
bers and amplitudes for such a calculation. For the viscoe
tic fluid, the parameters are the same as before except
np,2 /ns,25100. The response is always subharmonic in t
02630
p
n
er
-
ty

ic
-
t

al
he
d
-
en

s

e

e
is
id
is

se

74

o
a

n-

-
e
-
e-

e.
d

e
he
e

id
ar

s-
at

s

case sincenp,2 /ns,2 is relatively small. The figures indicat
that although the wave numbers in both systems are sim
the critical amplitude increases less rapidly with the vib
tion frequency when there is a viscoelastic fluid. This is b
cause the viscous resistance to the instability, which is p
portional to the real part of Eq.~12! decreases asDe2
increases. The behavior seen in Fig. 4~a! and 4~b! is analo-
gous to that observed for surface waves when there is o
one fluid @9,10#.

C. Both fluids viscoelastic

Waves on the surface of an elastic solid are known
Rayleigh waves, and exhibit a linear relationship betwe
wave frequency and wave number. Viscoelastic fluids beh
like elastic solids when elastic forces become very stro
compared to surface tension and viscous forces, and w
deformations occur on time scales shorter than the fluid
laxation time. Indeed, when only the bottom fluid is prese
it is possible to excite Rayleigh-like surface waves throu
vertical vibration@9#. The evidence for this comes from th
fact that the slope of the frequency-wave-number relation
the fluid closely matches that for Rayleigh waves on an e
tic solid having the same shear modulus and density as
fluid.

When both a bottom and top fluid are present, it is natu
to ask whether it possible for vertical vibration to exci
Rayleigh-like waves at the interface. Interfacial waves b
tween two elastic solids are called Stoneley waves, and
obey a linear frequency-wave-number relationship@21,22#.
For Rayleigh waves on incompressible solids, the slope
this relationship is simply 0.955(m/r)1/2, where m is the
shear modulus andr is the density. For Stoneley waves, th
slope depends upon the modulus and density ratios in a m
more complicated fashion. The slope isy(m2 /r2)1/2 where
m2 andr2 are the shear modulus and density of the top so
The constanty is a root of a complicated determinant, whic
is given by Eq.~5.110! in @22#. As is typical in wave propa-
gation problems, the determinant is obtained from the in
facial boundary conditions and its roots correspond to n
trivial wave propagation speeds.

We have performed stability calculations wherens,1
5ns,250.01 cm2/s, np,15np,25100 cm2/s, l15l251
31022 s, and s510 dyne/cm. The shear modulus,m j
5np, jr j /l j , of each fluid is different, but the shear wav
speeds, (m j /r j )

1/25(np, j /l j )
1/2, are the same. The sam

range of forcing frequencies as before was considered a
linear relationship between the critical wave number and
vibration frequency was found.~The vibration frequency is
the same as the standing wave frequency in this case s
the waves respond harmonically to the forcing.! When r1
51 g/cm3 andr250.98 g/cm3, the slope of this relationship
is approximately 103 cm/s. Using the moduli and densities
the two fluids, we have also computed the slope predicted
the Stoneley wave theory. This gives a slope of 100 cm
which is in good agreement with the stability calculation
Therefore, it appears possible to excite Stoneley like wa
at the interface of two viscoelastic fluids undergoing verti
vibration. We have tried several other density ratios and a
found good agreement between the two calculations.
5-5
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FIG. 4. Comparison of the~a! critical wave
number (kc) and ~b! critical vibration amplitude
(ac) when the top fluid is viscoelastic~dashed
line! and when it is Newtonian~solid line! but
with the same zero-shear viscosity. The vibrati
frequency isv.
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IV. DISCUSSION AND CONCLUSIONS

When the interface between two viscoelastic fluids is s
ject to vertical vibration, it can become unstable and give r
to standing waves. Our linear stability analysis allows p
diction of both the critical amplitude and the critical wav
number, and this can be done for fluids of arbitrary depth
relaxation moduli. To elucidate the fundamental features
viscoelasticity, our results focused on infinite-depth flu
and made use of the single-mode Maxwell model.

When the bottom fluid is viscoelastic, the presence o
top Newtonian fluid makes it more difficult to excit
the instability. It also shifts the critical wave numbers a
the frequency of the subharmonic-to-harmonic transiti
The behavior of the critical vibration amplitude with respe
to the viscosity ratio and density ratio can be understo
in terms of the corresponding Newtonian problem. T
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shifts in the wave number and transition frequency co
not have been anticipated from previous work.

If the bottom fluid is Newtonian and the top fluid is vis
coelastic, it is possible for the surface waves to respond
monically to the forcing if elastic forces are sufficient
strong relative to surface tension and viscous forces, an
the Deborah number of the top fluid isO(1). We have also
found that the harmonic response will not occur unless
top fluid is sufficiently dense compared to the bottom flu
and that the critical amplitude, critical wave number, a
transition frequency all depend on the density and visco
ratios. If the level of elasticity is relatively weak, then th
response will be subharmonic but the instability will b
easier to excite compared to the case where one has a N
tonian top fluid of the same zero-shear viscosity. The mec
nism responsible for this behavior is the same one that o
ates when only one fluid is present@9,10#.
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If both fluids are viscoelastic, Stoneley-like waves can
excited at the interface since the fluids can be made to
have like elastic solids. This is an extension of a previo
discovery that Rayleigh-like waves can be excited when o
one fluid is present@9#.

The method developed in this paper should prove us
for understanding interfacial wave formation in applicatio
where vertical vibration plays a role, including ultrason
emulsification, microgravity science and engineering, a
geophysics. For ultrasonic emulsification, one usually
De1,2@1. Thus, our results imply that the Newtonian theo
should do an adequate job in predicting the initial instabi
if the solvent viscosity is used in the calculations. Howev
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non-Newtonian effects will likely become important in th
nonlinear regime of the instability as droplets pinch off fro
the interface. At mechanical frequencies, non-Newtonian
fects should be more pronounced in the linear regime,
the present study provides a framework for understand
such effects.
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