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Vibration-induced interfacial instabilities in viscoelastic fluids
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Vertically vibrated interfaces between viscoelastic fluids may arise in contexts as diverse as ultrasonic
emulsification, microgravity materials processing, and geophysics. If the vibration amplitude is large enough at
a given frequency, the interface can become unstable and give rise to standing waves. The present work
provides a linear analysis of this phenomenon for the cases where either or both of the fluids are viscoelastic.
The fluids are assumed to be laterally unbound, and Floquet theory is used to develop a recursion relation
between the temporal modes of the interfacial deformation. Conversion of this relation into a matrix eigenvalue
problem allows determination of the critical vibration amplitude needed to excite the standing waves and the
corresponding critical wave number. Using a single-mode Maxwell model to describe the viscoelasticity and
considering infinite fluid depths, we present calculations for three cases: bottom fluid viscoelastic/top fluid
Newtonian, bottom fluid Newtonian/top fluid viscoelastic, and both fluids viscoelastic. When only one of the
fluids is viscoelastic, the interfacial waves can respond harmonically to the forcing. The waves may also be
excited more easily than in the case where both fluids are Newtonian. When both of the fluids are viscoelastic,
it appears possible to excite Stoneley-like waves at the interface.
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[. INTRODUCTION logical properties and be in contact with water or other sedi-
ment[13]. Having a way to compute the critical amplitude
When a flat free surface is subject to vertical vibration, itand wave number of vibration-induced interfacial waves
may become unstable to standing waves. This was first rdnight prove useful in predicting some of the effects of earth-
ported by Faradajl], and over a century later the mecha- duakes. .
nism was explained by Benjamin and Urd@l]. The mecha- Vibration-induced waves at the interface between two
nism is that of parametric resonance, and is exemplified by &'eW_tO”'ar.‘ fluids have_ been analyzed by a n_umber of dlf_fer-
pendulum whose pivot point oscillates verticall§]. This ent investigators. Motivated by the ob_servatlon th_at ver_t!cal
problem has been thoroughly examined for invisEH], vibration can suppress the Raylelgh-Taonr instability,
Newtonian[5—7], and viscoelasti¢8—11] fluids. Linear sta- Troyon.and _Gruber app_hed Foun_er and Laplace traljsforms
bility analysis accurately predicts the critical vibration am- to the I|n.e'ar|zeq governing gquatloﬁbfl]. Their predictions
plitude needed to excite the surface waves, as well as t f the critical vibration amplitude and wave number agreed

corresponding critical wave number. A similar instability and avorably with the experiments of Hoffmann and WEif).

mechanism operate when the interface between two immis-[he same problem was also considered by Jacqmin and Du-

cible fluids is subject to vertical vibration. While the caseval’ who applied Floguet theoa6]. In both of the above

where both fluids are Newtonian has been well studied, th t.udies, the fluids were assumed to be of infinite depth.

cases where either or both fluids are viscoelastic have n t'n'te'deDth effects were accounted for by Hasegawa, Na-

: ‘n shima, and Takashimd?], as well as by Kumar and
been examined. _The Iatte_r cases are of potential Importan(%ilckerman (18] Againrr[the] theoretical prgdictions were
to several practical applications and are the topic of th(?ound to be in éood adreement with experimental measure-
present study.

The excitation of interfacial waves by vertical vibration is melﬂt?r[\iﬂi/\l/qr'k we extend the above studies t wher
relevant to emulsification, microgravity materials processing, ne or t?othoof, th: ﬁuigs areevizcge?aitit:: S\?e g;&flelfloqueete
and geophysics. If the wave amplitude becomes sufficientl . . . e
Iargeg drgp?/ets may pinch off ang produce an emulsion UI_heory to the linearized governing equations and demonstrate
traso,und can be used as a vibration source, and doing éo ]:_FPW one can calculate the critical vibration amplitude needed
Newtonian fluids results in stable dispersions of submicro 0 exc_|tt_e sltandmg wavbes alt thSe mtclalrface, a|;1d thtehcorrest,)glaond-
particles having a relatively uniform size distributiph2]. Ing critical wave number. In Sec. i, we Set up the probiem

Applving this techni to viscoelastic fluids mav lead to the@nd explain the calculation_method. Results are presenteq in
pplying this technique to viscoelastic fluids may lead to °Sec. [ll, where we consider three cases: bottom fluid

creation of novel polymeric nanocomposite materials. In mi-". . . . . .
poly P iscoelastic/top fluid Newtonian, bottom fluid Newtonian/top

crogravity environments, viscoelastic fluids may appear a% e . ) . S X
polymer solutions and melts, colloidal suspensions, or bio- uid viscoelastic, and both fluids viscoelastic. Finally, a dis-

logical media(e.g., cells suspended in solutjoff these flu- cussion and conclusions are given in Sec. IV.
ids are in contact with another fluid and undergo vertical
vibration, the resulting interfacial waves may be detrimental
to the process of which the fluids are a part. On geophysical The base state for the problem is shown in Fig. 1. Two
scales, liquid-like sediment could possess viscoelastic rheammiscible fluids whose interface is flat undergo a vertical

Il. PROBLEM SETUP
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2\ 2 1 2/2
ZT fluid 2 (di—vs;VAV Wj—p—jfme,-(t—t )V2(V2wj)dt' =0,
z=0 — i g - a cos{mt) (4)

fluid 1 wherevg ;= 7s;/p; .
z=-h Equation(4) is subject to boundary conditions at the solid
walls (no-slip and no-penetratigrand at the interfacécon-
FIG. 1. Interface between two viscoelastic fluids under verticaltinuity of velocity, and balance of tangential and normal

vibration. The reference frame moves with the vibration so that thforce componenjs Because these boundary conditions have

interface is located a&=0 in the base state. The fluids are boundedforms very similar to those given i9] and[18], we do not

by solid walls atz=—h, and z=h,. The vibration occurs at a reproduce them here. The interface locativ®,f(,y,t), is

frequencyo and with an amplitude. The mean gravitg acts in  described by the kinematic conditi¢h].

the nggativ& direction, and.the top fluid is taken to have a smaller The normal-mode decomposition is performed by replac-

density than the bottom fluid. ing w;j(x,y,z,t) with w;(z,t)expfk-x) and {(x,y,t) with

{(t)exp(k-x). Here,k is a real-valued wave vectéwhose

! Loalll - HUEt! magnitude is denoted ) andx is a coordinate vector, both

gravity g acting in the negative-direction. We denote the ot \hich are in thex-y plane. Since the system under study

bottom fluid as “fluid 1” and the top fluid as “fluid 2.” Their is periodically forced, Floquet theory can be applied to de-

densities are given by, and p,, and we assume that,  geripe its time dependence. Fourier series are used to enforce
<p; so that the interface is stable in the absence of vibraghe 2.7/, periodicity of £ and thew,

tion. A tensiono acts at the interface. Adopting a reference
frame that moves with the oscillation, we take the flat inter- _ * _
face to be located at=0 and the fluids to be bounded by [(t)y=glstiewlt X' ginot (5)
solid walls atz=h, andz= —h;. The fluids are assumed to n=-=
be laterally unbound, and this will be a good assumption
when the critical wavelength is much less than the container Lo i
width Wj(z,t)ze(SJﬂlI " 2 Wj,r‘l(z)emwta (6)
. n=—w=x
In linear stability analysis, we are interested in small de-

partures from the base state, and in this problem these cofyheres is a real-valued growth rate and the valuecofie-
respond to small deformation gradients since the base statetisrmines whether the surface responds subharmonically (
quiescent. As a consequence, the extra-stress tensors for the/2) or harmonically &=0) to the forcing. Previous work
fluids can be described by the theory of linear viscoelasticityon vibration-induced instabilities suggests that these are the
[20], only types of responses which need to be considered
[5,11,16,18.
B t , , Application of Eqs.(5) and(6) to the governing equations
TJ'_”Svi[VUiJF(VUi)T]JFf,xGJ'(t_t VY +(Vu)Tidt, g boundary conditions, along with a number of further
(1) manipulations like those if9] and[18], leads to a recursion
relation for thel,,

oscillation of amplitudea and frequencyw, with a mean

[’

where theu; are the velocity fields, th&; are the relaxation
moduli, and thers ; are the solvent viscosities for each fluid Anfn=a({ni1t dn-1), @)
(j=1 or 2.

Because the reference frame is moving, the equations
motion for each fluid will have time-dependent body forces
given by —p;B(t)e,, whereB(t)=g—acos(t) ande, is
the unit vector in the direction. Recognizing that in the base
state the pressure fields are time dependent, and that the
locities of the fluids are zero, leads us to the following lin-
earized momentum and continuity equations: q12n:k2+

(yyhere A, depend onk, the complex growth rats+i(a
+n)w, the physical properties of the fluids, the fluid depths,
and the forcing frequency. The expressions forAhere the
same as those used [ifi8] except that they now involve a
\)‘é@quency-dependent wave number and viscosity,

sti(a+n)w

Vj,n(w)

: ()

t
pjdiuj=—Vp;+ 7 V2u;+ fﬁmGj(t—t')Vzujdt’, (2)  with

7s,j 1 JOC .
_ i =—+— | Gi(nexg—[sti(at+n)w]t}dr.
V~Uj—0. (3) VJ,n(w) D, o Jo j(T) p—[ (a+n) o]t} T( )
9

All variables now refer to disturbance quantities. By apply-
ing the operatog,- VXV X to Eq.(2) and using Eq(3), we A matrix eigenvalue problem can be formed from the re-
can obtain equations for thecomponents of the velocities cursion relation(7) by truncating it at a finite value, say
w;j, =N [18]. The eigenproblem has the form
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i \/ wherev, ;= 7, ;/p; andDe;=\jw. TheDe; are the Debo-

. \ rah numbers of each fluid, and give the ratio of the fluid
: ! relaxation time to a characteristic time of the standing wave
oscillations. If De;<1 in a given fluid, then the non-

. Newtonian stresses relax relatively quickly and the fluid be-
haves in a Newtonian manner with (w)=vg;+ vy ;. If

De;>1, then the non-Newtonian stresses relax relatively
slowly and Newtonian behavior also occurs with ()

i =Vsjj-

! In] our work, we have obtained results for three cases:
bottom fluid viscoelastic/top fluid Newtonian, bottom fluid
Newtonian/top fluid viscoelastic, and both fluids viscoelastic.
The code for computing the critical vibration amplitude and
wave number was validated by reproducing known results
for Newtonian system$18]. We used ten Fourier modes
(N=10) in solving the matrix eigenvalue problem, and veri-
k fied that this was enough to give accurate solutions.

FIG. 2. Tonguelike neutral stability curves in tkea plane. The
tongues alternately correspond to subharmonic and harmonic re-
sponses of the interfacial waves to the forcing, with the tongue
closest to thea-axis corresponding to a subharmonic response. Before considering the instability at the interface between

a viscoelastic fluid and a Newtonian fluid, it is worthwhile to
1 review what happens when only the viscoelastic fluid is
A 1Bi=—¢. (10 presenfi.e., when the instability occurs at a free surfe/&.
a To see a distinct non-Newtonian effect on instability behav-
) ) ) ior, elastic forces must be at least as strong as viscous forces,
The matricesA and B are real and of dimension R(+1)  \yhich implies thaty,~ 7s. If this is the case, and if surface
X2(N+1), and the vectof is of dimension 2N+ 1)X1.  tengjon forces are sufficiently strong relative to elastic forces,
At each value ok and w, one can compute the eigenvalues ihe syrface waves will respond subharmonically to the forc-
1/a using standard algorithms. Doing this over a rangé of jng. The critical wave number will be similar to that for a
values at fixedw and plotting the results in thk-a plane  Newtonian fluid of the same zero-shear viscosity, but the
produces a sequence of tonguelike curifég. 2). One setof  cyitical amplitude will increase less rapidly with the vibration
curves can be generated for=1/2 (subharmonic response  frequency. Asn, increases at fixed)s and o, elastic forces
and another for=0 (harmonic respongeThe neutral sta- pecome “stronger relative to viscous forces and surface-
bility curves are those for whick=0, and the critical vibra- tensjon forces. In this case, it is possible for the surface

tion amplitude and corresponding wave number are given by aves to respond harmonically to the forcing provided that

A. Bottom fluid viscoelastic, top fluid Newtonian

the tongue tip closest to theaxis. De is not too large or too small. The presence of the har-
monic response also requirego be below a critical value,
Il. RESULTS which means that the elastic modulus must be above a criti-
cal value.

As we are interested in uncovering the most basic effects The harmonic response of viscoelastic fluids can occur
of viscoelasticity, we take both fluids to be of infinite depth when the fluid is of infinite depth, and is notable because
in our calculations. In addition, we adopt the single-modeNewtonian fluids of infinite depth airways respond subhar-

Maxwell model to describe the relaxation moduli, monically. The harmonic response in viscoelastic fluids ap-
pears to arise because such fluids can behave like elastic
L M , solids and thus support Rayleigh-like surface wa\8dsFor
Gj(t—t)= )\—jexp[—(t—t )INi], (1) Newtonian fluids that are relatively viscous 1 cn/s),

harmonic responses can occur in shallow layerd mm)

where the\; are the relaxation times for each fluid. If we _[5]' Here, the viscous dissipation at the bottom boundary

imagine that the viscoelasticity arises due to polymers dislfcreases more rapidly for longer quelengths as the quic_i
solved in a Newtonian solvent, then thg, ; represent the depth decreases. As a _res_ult, the tip of the. _subharmomc
polymer contributions to the zero-shear viscosity for eachtor‘gue closest to the-axis n the neutral stability curves
fluid. The ratiosz, ; /\; are simply the shear moduli. (F|_g. 2 gets DUShEd. to a higher vglue a)ftha_m th‘.'"t of th_e_
With the singri'ejz-mjode Maxwell model, the complex- neighboring harmonic tongue. In viscoelastic fluids of finite

valued frequency-dependent viscosi®y becomes depth, thl_s meqhanlsm for produmlng a.harmonlc response
operates in addition to the mechanism discussed above.

Since the infinite-depth harmonic response is the most
v (@)= vg i+ # (12)  distinguished feature of the free-surface instability for a vis-
I 1 1+i(a+n)De; coelastic fluid, our results for interfacial instability will focus
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FIG. 3. The(a) critical wave numberK;) and
(b) critical vibration amplitude 4.) vs the vibra-
tion frequency(w) for the case where the bottom

() 1 L 1 1 1
20 40 60 80 100 120 140 160 180 200

2r (H Sy . L

(@) o/2r (Hz) fluid is viscoelastic and the top fluid is Newton-

10" : : : : : : _ ian. Open circlep,/p;=0.1,v4,/vs =1, Dash-

] dot line: p,/p;=0.98,v,,/vs1=1; Dashed line:
emm—mm——-- TSI TTTIIC IO p2/p1=0.98, vs,/v5,=100; Solid line: p,/p;
_ -z zETTTT 1 :Ol, VS,Z/VSJ: 100.
10’ 27 3
4

b 2
:30 1o SOO00OU uuuuuvuuuu_—

10' .

100 1 Il 1 1 1 1 Il 1

20 40 60 80 100 120 140 160 180 200

(b) ®/2n (Hz)

on how the harmonic response is affected by a top fluid thabg,/vs =1, the response is similar to what would occur if a
is Newtonian. To facilitate comparison with previous studies free surface were present. At around 80 Hz, there is a tran-
our calculations are done in dimensional units. We consider aition from a subharmonic to a harmonic response and the
viscoelastic fluid corresponding to a semidilute polymer sowave number jumps to a larger value. As/p, increases to
lution, where p;=1g/cn?,  vg,=0.01cnd/s, vpa  0.98, the transition frequency decreases to around 74 Hz. The
=10cnt/s, and\;=1x10"3s. The interfacial tensiomris  critical wave numbers and amplitudes also become larger.
taken to be 10 dyne/cm. The viscosity,() and density f,) When vg,/vq is then increased to 100, the transition fre-
of the top fluid are varied in the calculatios, , and\, are  quency increases back to around 80 Hz. The wave numbers
zero) We also consider vibration frequencies between 20 andat least after the transitiphbecome larger, as do the ampli-
200 Hz, which correspond to mechanical agitation. For ultratudes. Finally, ag,/p4 drops to 0.1 the transition frequency
sonic frequenciesDe;>1 and the harmonic response will remains at about the same value, but the critical wave num-
not be present. The mean gravifyis taken to be that of bers and amplitudes decrease. The plotsgr/ v ;=1 and
earth, 981 crfis. vs2/vs1=100 atp,/p;=0.1 are approximately the same,
Figure 3a) shows plots of the critical wave number ver- due to the fact that the density of the top fluid is very small
sus the vibration frequency for different values of the ratioscompared to that of the bottom.
p2/p; and vs,/vg,. Figure 3b) shows the corresponding From the above results, as well as from other runs we
plots of the critical vibration amplitude. For,/p;=0.1 and have performed, we can draw the following conclusions. At a
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fixed solvent viscosity ratio, increasing the density of the topcase sincev,, ,/ v, is relatively small. The figures indicate
layer relative to that of the bottom decreases the transitioithat although the wave numbers in both systems are similar,
frequency and increases the critical amplitudes. The highéhe critical amplitude increases less rapidly with the vibra-
amplitudes imply that the instability becomes harder to exion frequency when there is a viscoelastic fluid. This is be-
cite, and this is consistent with what we expect since densitg@Use the viscous resistance to the instability, which is pro-

. : . - L _portional to the real part of Eq(12) decreases a®e,
differences amplify the instability. The critical wave num increases. The behavior seen in Figa)and 4b) is analo-

bers, both before and after the subharmomc-.to-har.mqn|§ous to that observed for surface waves when there is only
transition, also tend to increase. At a fixed density ratio, INone fluid[9,10].

creasing the solvent viscosity of the top layer relative to that
of the bottom increases the transition frequency and critical
amplitudes. Here, the higher amplitudes result because the i )
increased viscous dissipation provided by the upper fluid Waves on the surface of an elastic solid are known as-
must be overcome in order to excite the instability. The criti-Rayleigh waves, and exhibit a linear relationship between
cal wave numbers before the transition increase and theff@ve frequency and wave number. Viscoelastic fluids behave
decrease ass,/ v, , increases, while those after the transi- like elastic solids when el_astlc forc_es become very strong
tion increase. The behavior of the critical amplitudes asompared to surface tension and viscous forces, and when
veolve, OF pylp, vary does not appear to be a non- defor_mau.ons occur on time scales shorter tha_n t.he fluid re-
Newtonian effect since similar behavior is seen in the cast®X@tion time. Indeed, when only the bottom fluid is present,
where both fluids are Newtonian. it |s_poss_|ble to excite Raylglgh—llke surf_ace waves through
vertical vibration[9]. The evidence for this comes from the
fact that the slope of the frequency-wave-number relation for
the fluid closely matches that for Rayleigh waves on an elas-

When both fluids are Newtonian and of infinite depth, thetic solid having the same shear modulus and density as the
interfacial waves always respond subharmonically to thefuid.
forcing. In the preceding section, we have seen that it is When both a bottom and top fluid are present, it is natural
possible to obtain a harmonic response when the bottom fluitb ask whether it possible for vertical vibration to excite
is viscoelastic. We have also found that such a response Rayleigh-like waves at the interface. Interfacial waves be-
possible when the top fluid is viscoelastic. Consider the casgveen two elastic solids are called Stoneley waves, and also
where vg,=0.01cnf/s, p;=1glen?, and o=10dyne/cm obey a linear frequency-wave-number relationsfg,22.
(vp.1@ndh, are zerg. If we use the same range of vibration For Rayleigh waves on incompressible solids, the slope of
frequencies as before and takes,/vs1=1, vp,/vs,  this relationship is simply 0.955(p)? where u is the
=1000,p,/p,=0.98, and\=1x 10 s, a transition from a  shear modulus ang is the density. For Stoneley waves, the
subharmonic to a harmonic response is observed around Blope depends upon the modulus and density ratios in a much
Hz. more complicated fashion. The slopeyi6u,/p,)*? where

As the parameters for the viscoelastic fluid are similar tow, andp, are the shear modulus and density of the top solid.
those used before, the same criteria apply for obtaining &he constany is a root of a complicated determinant, which
harmonic response; elastic forces must be sufficiently stroris given by Eq.(5.110 in [22]. As is typical in wave propa-
ger than surface tension and viscous forces, Bied must  gation problems, the determinant is obtained from the inter-
not be too large or small. In additiop,/p; must be suffi-  facial boundary conditions and its roots correspond to non-
ciently large; the harmonic response will disappegpJfis  trivial wave propagation speeds.
made too small compared t@,. When the harmonic re- We have performed stability calculations wherg ;
sponse does occur, we find that increasindp; at fixed =w,,=0.01cnt/s, Vp1= Vp2=100 cnf/s, Ny=\p,=1
vs2/vs1 tends to decrease the transition frequency and inx 10 2s, and o=10dyne/cm. The shear modulugy;
crease the critical amplitudes. Before and after the= vp,ipj/\;, of each fluid is different, but the shear wave
subharmonic-to-harmonic transition, the critical wave num-speeds, £;/p;)"?=(v,;/\))"2 are the same. The same
bers decrease. We also find that as the Newtonian fluid beange of forcing frequencies as before was considered and a
comes more viscous at fixgg /p; (i.e., vs,/vsy decreasgs  linear relationship between the critical wave number and the
the transition frequencies and critical amplitudes increasevibration frequency was foundThe vibration frequency is
Before the transition, the critical wave numbers increase anthe same as the standing wave frequency in this case since
then decrease, while after the transition the critical wavehe waves respond harmonically to the forcjng/hen p;
numbers increase. We note that the effects of changing the 1 g/cn? andp,=0.98 g/cni, the slope of this relationship
solvent viscosity ratio are similar to what was reported in theis approximately 103 cm/s. Using the moduli and densities of
preceding section. the two fluids, we have also computed the slope predicted by

We can also compare the effects of a viscoelastic top fluidhe Stoneley wave theory. This gives a slope of 100 cm/s,
to those of a Newtonian one having the same zero sheavhich is in good agreement with the stability calculations.
viscosity. Figures @) and 4b) show the critical wave num- Therefore, it appears possible to excite Stoneley like waves
bers and amplitudes for such a calculation. For the viscoelagt the interface of two viscoelastic fluids undergoing vertical
tic fluid, the parameters are the same as before except thaioration. We have tried several other density ratios and also
vp 2l vs>,=100. The response is always subharmonic in thisfound good agreement between the two calculations.

C. Both fluids viscoelastic

B. Bottom fluid Newtonian, top fluid viscoelastic
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IV. DISCUSSION AND CONCLUSIONS shifts in the wave number and transition frequency could
not have been anticipated from previous work.

When the interface between two viscoelastic fluids is sub- If the bottom fluid is Newtonian and the top fluid is vis-
ject to vertical vibration, it can become unstable and give riseoelastic, it is possible for the surface waves to respond har-
to standing waves. Our linear stability analysis allows pre-monically to the forcing if elastic forces are sufficiently
diction of both the critical amplitude and the critical wave strong relative to surface tension and viscous forces, and if
number, and this can be done for fluids of arbitrary depth anthe Deborah number of the top fluid @(1). We have also
relaxation moduli. To elucidate the fundamental features ofound that the harmonic response will not occur unless the
viscoelasticity, our results focused on infinite-depth fluidstop fluid is sufficiently dense compared to the bottom fluid,
and made use of the single-mode Maxwell model. and that the critical amplitude, critical wave number, and

When the bottom fluid is viscoelastic, the presence of aransition frequency all depend on the density and viscosity
top Newtonian fluid makes it more difficult to excite ratios. If the level of elasticity is relatively weak, then the
the instability. It also shifts the critical wave numbers andresponse will be subharmonic but the instability will be
the frequency of the subharmonic-to-harmonic transitioneasier to excite compared to the case where one has a New-
The behavior of the critical vibration amplitude with respecttonian top fluid of the same zero-shear viscosity. The mecha-
to the viscosity ratio and density ratio can be understoodhism responsible for this behavior is the same one that oper-
in terms of the corresponding Newtonian problem. Theates when only one fluid is presdi®,10].
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If both fluids are viscoelastic, Stoneley-like waves can benon-Newtonian effects will likely become important in the
excited at the interface since the fluids can be made to batonlinear regime of the instability as droplets pinch off from
have like elastic solids. This is an extension of a previoushe interface. At mechanical frequencies, non-Newtonian ef-
discovery that Rayleigh-like waves can be excited when onlytects should be more pronounced in the linear regime, and

one fluid is presenf9]. the present study provides a framework for understanding
The method developed in this paper should prove usefulch effects.

for understanding interfacial wave formation in applications
where vertical vibration plays a role, including ultrasonic

emulsification, microgravity science and engineering, and
geophysics. For ultrasonic emulsification, one usually has
De; »>1. Thus, our results imply that the Newtonian theory ~ The author thanks Professor Krishna Garikipati of the
should do an adequate job in predicting the initial instabilityUniversity of Michigan for help in directing him to the lit-

if the solvent viscosity is used in the calculations. Howevergerature on Stoneley waves.
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